Bradyrhizobium elkanii nod regulon: insights through genomic analysis
نویسنده
چکیده
A successful symbiotic relationship between soybean [Glycine max (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.
منابع مشابه
Application of representational difference analysis to identify genomic differences between Bradyrhizobium elkanii and B. Japonicum species
Bradyrhizobium elkanii is successfully used in the formulation of commercial inoculants and, together with B. japonicum, it fully supplies the plant nitrogen demands. Despite the similarity between B. japonicum and B. elkanii species, several works demonstrated genetic and physiological differences between them. In this work Representational Difference Analysis (RDA) was used for genomic compar...
متن کاملHigh-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr
Bradyrhizobium elkanii USDA 76T (INSCD = ARAG00000000), the type strain for Bradyrhizobium elkanii, is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-fixing root nodule of Glycine max (L. Merr) grown in the USA. Because of its significance as a microsymbiont of this economically important legume, B. elkanii USDA 76T was selected as part of ...
متن کاملGenome Sequence of Bradyrhizobium viridifuturi Strain SEMIA 690T, a Nitrogen-Fixing Symbiont of Centrosema pubescens
SEMIA 690(T) is a nitrogen-fixing symbiont of Centrosema pubescens, and comprises the recently described species Bradyrhizobium viridifuturi. Its draft genome indicates that it belongs to the Bradyrhizobium elkanii superclade. SEMIA 690(T) carries two copies of the regulatory nodD gene, and the nod and nif operons resemble those of Bradyrhizobium diazoefficiens.
متن کاملDraft genome sequence of the nitrogen-fixing symbiotic bacterium Bradyrhizobium elkanii 587.
The draft sequence of the genome of Bradyrhizobium elkanii 587 is presented. This was obtained using Illumina Next-Gen DNA sequencing combined with Sanger sequencing. Genes for the pathways involved in biological nitrogen fixation (the nif gene cluster), nod genes including nodABC, and genes for the type III protein secretion system (T3SS) are present.
متن کاملConservation of type III secretion system genes in Bradyrhizobium isolated from soybean.
The distribution of rhcRST genes encoding the type III secretion system (T3SS) in a collection of Bradyrhizobium strains was characterized by PCR and Southern blot hybridization. The polymorphism of the corresponding sequences amplified by PCR was characterized by RFLP and sequencing together with those available in the databank. Genomic group I is characterized by the presence of Bradyrhizobiu...
متن کامل